Reduced graphene oxide as an efficient platform for rechargeable lithium batteries

2016.09.26 *Korea-U.S. Forum on Nanotechnology*

Hanyang University, Department of Energy Engineering Yun Jung Lee

Introduction

Reduced graphene oxide (rGO) as a conducting support for rechargeable lithium batteries

- Recent result of our group
 - I. rGO as a electrical conducting platform for high power lithium ion battery
 - II. rGO as an efficient catalyst support for Li-air cells : Study on the catalytic activity of noble metal-RGO hybrids in Li-air cel
- Summary

rGO as a conducting support for lithium batteries

- Reduced graphene oxide (rGO)
- A derivative of graphene. Reduced from graphene oxide

Reduction to restore graphitic structures (chemically or thermally)

- The reduction cannot completely recover graphitic structure in graphene.
- Thus rGO is a defective graphene with some oxygen functionalities.
- Though not conductive as perfect graphene, rGO is conducting.

rGO as a conducting support for lithium batteries

 Oxygen functional groups can be utilized as anchoring sites for particle growth leading nanoparticle growth in 2-D conducting rGO

 Co_3O_4 -rGO, SnO_2 -rGO, MnO_2 -rGO hybrid anode showed superior rate capability and cycling stability due to nanosizing and facile electron transport through 2 D sheets

I. rGO as an electrical conducting platform for high power lithium ion battery

Synthesis of Core-Shell LiFePO₄/C-rGO (LFP/C-rGO)

Role of rGO

- RGO provides efficient electrical pathway for electrons
- Active material growth on rGO sheets inherently restrict particle growth : platform for nanoparticle growth

Structural Analysis of Core-Shell LiFePO₄/C-rGO

to rGO

nanoparticles (30~40 nm) loaded on rGO

High Power Performance of LFP/C-rGO

 LFP/C-rGO showed much higher capacity at high rates : Superior high power performance (rate capability)

Superior high power performance due to true nanoscale LFP/C active material-rGO conducting support composite formation

High Power Performance

LFP/C-rGO hybrid

- Potential interval is the smallest
- Current highest

LFP/C-rGO hybrid

Smallest semicircle =lowest

Ohmic resistance

Better kinetics and lower resistance resulting from fast electron supply

II. rGO as an efficient catalyst support for Li-air cells

Rechargeable Li-Air Batteries

Fundamental cathode reaction in aprotic Li-Air Batteries

Noble Metal Nanoparticles Supported on rGO

Pt, Pd, Ru-rGO: polyol synthesis

Structural Analysis(1)

✤ Average particles size: ~2.2 nm

Nanocrystalline metallic + rGO by XRD

Mass content: ~ 50 wt %

(Pt 49 wt%, Pd 45 wt%, Ru 46 wt%)

Structural Analysis(2)

Surface oxidation by XPS

Main peaks corresponds to metallic noble metals : No significant surface oxidation

Catalytic Activity in Li-Air Batteries

Catalytic Mechanism of Ru-rGO

Identification of Discharge Products(1)

- No crystalline peak from powder XRD: amorphous
- Discharge products analyzed by Raman and XPS

Morphology Trace

*Since the current density test is already quite high (400 µA cm⁻²), discharge particles are not toroids, but feature size is clearly smaller for Ru-rGO! Nano Letters, accepted (2015)

Suggested Mechanism of Ru-catalysts

The discharge products are mixture of stoichiometric Li_2O_2 and defective or smaller sized Li_2O_2 /or the superoxide LiO_2 . The amount of LiO_2 largely depends on the kinetic parameters during discharge.

Catalysts might have stronger binding with oxygen or superoxide providing more nucleation sites & leading LiO_2 or poorly crystalline, small-sized Li_2O_2 structure.

- facilitate the decomposition of stoichiometric $\mathrm{Li}_2\mathrm{O}_2$ that might be present in the discharge product

Summary

rGO served as a efficient electrical pathways to enable high power performances in LIB

 rGO enabled very uniform, nanosized noble metal catalyst (~2 nm) synthesis on its surface. Resulting catalyst system reduces charge overpotentials in Li-air cells

